材料学
计算效率提升100倍以上,上交李金金团队开发基于Transformer的大模型用于从头算分子动力学
作者 | 陶科豪编辑 | 白菜叶精确模拟原子与分子的动态行为对于开发新一代高效能材料至关重要。然而,传统的从头算分子动力学(AIMD)模拟虽然提供了高精度的预测能力,但由于其高昂的计算成本和漫长的模拟时间,大大限制了研究的进度。例如,完成一个含 100 个原子的材料系统的 30 皮秒模拟,常常需要数月时间,这对于需要快速迭代和优化的新材料研发构成了巨大挑战。在这种背景下,一个能够显著加快这一过程的人工智能模型具有重要价值。面对这些挑战,上海交通大学人工智能与微结构实验室(AIMS-lab)开发了名为 T-AIMD
6/17/2024 3:06:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
AI模型