AI反馈
重大突破!研究团队揭示大语言模型内部潜藏的 “奖励机制”
近日,南京大学的周志华教授团队发布了一项重要研究,首次理论证明了在大语言模型中可以发现内源性奖励模型,并有效应用强化学习(RL)来提升模型表现。 当前,许多对齐方法依赖于人类反馈强化学习(RLHF),这种方法需要大量高质量的人类偏好数据来训练奖励模型。 然而,构建这样一个数据集不仅耗时费力,还面临成本高昂的挑战。
7/2/2025 6:00:45 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
用户
Meta
微软
GPT
学习
技术
图像
Gemini
马斯克
AI创作
智能体
英伟达
Anthropic
论文
代码
训练
AI新词
算法
Stable Diffusion
芯片
LLM
蛋白质
开发者
腾讯
Claude
苹果
生成式
AI for Science
Agent
神经网络
3D
机器学习
研究
xAI
生成
人形机器人
AI视频
计算
百度
Sora
GPU
AI设计
华为
工具
大语言模型
RAG
搜索
具身智能
字节跳动
大型语言模型
场景
深度学习
预测
视频生成
伟达
视觉
Transformer
AGI
架构
亚马逊
神器推荐
Copilot
DeepMind
特斯拉
应用