自进化文本识别器
小模型如何进行上下文学习?字节跳动 & 华东师大联合提出自进化文本识别器
我们都知道,大语言模型(LLM)能够以一种无需模型微调的方式从少量示例中学习,这种方式被称为「上下文学习」(In-context Learning)。这种上下文学习现象目前只能在大模型上观察到。比如 GPT-4、Llama 等大模型在非常多的领域中都表现出了杰出的性能,但还是有很多场景受限于资源或者实时性要求较高,无法使用大模型。那么,常规大小的模型是否具备这种能力呢?为了探索小模型的上下文学习能力,字节和华东师大的研究团队在场景文本识别任务上进行了研究。目前,在实际应用场景中,场景文本识别面临着多种挑战:不同的场
11/27/2023 10:56:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AI
AIGC
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
Sora
3D
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind