隐藏
谷歌承认“窃取”OpenAI 模型关键信息:成本低至 150 元,调用 API 即可得手
什么?谷歌成功偷家 OpenAI,还窃取到了 gpt-3.5-turbo 关键信息???是的,你没看错。根据谷歌自己的说法,它不仅还原了 OpenAI 大模型的整个投影矩阵(projection matrix),还知道了确切隐藏维度大小。而且方法还极其简单 —— 只要通过 API 访问,不到 2000 次巧妙的查询就搞定了。成本根据调用次数来看,最低 20 美元以内(折合人民币约 150 元)搞定,并且这种方法同样适用于 GPT-4。好家伙,这一回阿尔特曼是被将军了!这是谷歌的一项最新研究,它报告了一种攻击窃取大模
3/12/2024 1:33:09 PM
汪淼
比现有方法快1000倍!华盛顿大学和微软团队使用图神经网络从单个蛋白质结构中预测隐藏Pocket的位置
编辑 | 萝卜皮有的蛋白质在基态结构中缺乏 Pocket,因此被认为是「不可成药的蛋白质」。通过靶向隐藏 Pocket,可以在「不可成药的蛋白质」中寻找新的机会,来扩大药物发现的范围。然而,识别隐藏 Pocket 是一项劳动密集型且十分缓慢的工作。能否准确快速地预测结构,以及在何处可能形成隐藏 Pocket 的能力,可以加快寻找隐藏 Pocket 的速度。在这里,华盛顿大学和微软团队的研究人员介绍了 PocketMiner,这是一种图形神经网络,经过训练可以预测分子动力学模拟中 Pocket 可能打开的位置。将 P
3/6/2023 6:17:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
代码
Anthropic
英伟达
算法
Stable Diffusion
芯片
智能体
训练
开发者
生成式
腾讯
蛋白质
苹果
AI新词
神经网络
3D
研究
生成
Claude
机器学习
LLM
计算
Sora
AI设计
AI for Science
AI视频
GPU
xAI
人形机器人
百度
华为
搜索
大语言模型
场景
Agent
字节跳动
预测
深度学习
伟达
工具
大型语言模型
Transformer
RAG
视觉
神器推荐
模态
Copilot
亚马逊
具身智能
LLaMA
文本
算力
驾驶
DeepMind