神经网络
宝可梦GO「偷家」李飞飞空间智能?全球最强3D地图诞生,150万亿参数解锁现实边界
李飞飞提出的「空间智能」概念,被宝可梦GO团队抢先实现了? 最近,宝可梦GO团队宣布,构建出了一个大规模地理空间模型LGM,让我们距离空间智能更近了一步。 而这一成果也意味着,人类在空间计算和AR眼镜领域,即将进入崭新的时代。
11/21/2024 1:45:00 PM
新智元
如何简单理解视觉语言模型以及它们的架构、训练过程?
关于视觉语言模型(VLMs),以及它们的架构、训练过程和如何通过VLM改进图像搜索和文本处理的多模态神经网络。 可以参考这篇文章:(VLMs),它们是未来的复合AI系统。 文章详细描述了VLMs的基本原理、训练过程以及如何开发一个多模态神经网络,用于图像搜索。
11/12/2024 9:20:03 AM
ketchum
最小化的递归神经网络RNN为Transformer提供了快速高效的替代方案
译者 | 李睿审校 | 重楼Transformer如今已经成为大型语言模型(LLM)和其他序列处理应用程序的主要架构。 然而,它们固有的二次方计算复杂性成为了将Transformer扩展至超长序列时的巨大障碍,显著增加了成本。 这引发了人们对具有线性复杂性和恒定内存需求的架构的兴趣。
11/11/2024 8:11:49 AM
李睿
快速学会一个算法,卷积神经网络
大家好,我是小寒今天给大家介绍一个强大的算法模型,卷积神经网络卷积神经网络(CNN)是一种专门用于处理图像、视频等具有网格结构数据的深度学习模型。 CNN 通过局部连接和参数共享的方式,大幅减少了模型的计算量,能有效提取数据的局部和全局特征,被广泛应用于计算机视觉领域,如图像分类、物体检测、图像分割等。 图片卷积神经网络的基本结构卷积神经网络的主要包括卷积层、池化层和全连接层。
11/11/2024 12:00:02 AM
程序员小寒
终于把神经网络中的激活函数搞懂了!!!
今天给大家分享神经网络中的一个关键概念,激活函数激活函数是神经网络中的核心组件之一,其主要作用是在每个神经元中为输入信号提供非线性变换。 如果没有激活函数,神经网络将充当简单的线性模型。 激活函数的作用激活函数的引入使得神经网络可以学习和表示复杂的非线性关系,从而解决一些线性模型无法处理的问题。
11/7/2024 8:26:31 AM
程序员小寒
用 PyTorch 构建神经网络的 12 个实战案例
用PyTorch构建神经网络是机器学习领域中非常热门的话题。 PyTorch因其易用性和灵活性而受到广大开发者的喜爱。 本文将通过12个实战案例,带你从零开始构建神经网络,逐步掌握PyTorch的核心概念和高级技巧。
11/5/2024 4:19:55 PM
手把手PythonAI编程
一种实现符号钢琴音乐声音和谱表分离的GNN新方法
译者 | 朱先忠审校 | 重楼本文涵盖了我最近在ISMIR 2024上发表的论文《聚类和分离:一种用于乐谱雕刻的声音和谱表预测的GNN方法》的主要内容。 简介以MIDI等格式编码的音乐,即使包含量化音符、拍号或小节信息,通常也缺少可视化的重要元素,例如语音和五线谱信息。 这种限制也适用于音乐生成、转录或编曲系统的输出。
11/5/2024 8:19:11 AM
朱先忠
中国科学院核聚变最新进展,AI 加速等离子体参数预测
编辑 | KX等离子体离子温度和旋转速度是评估聚变实验的重要参数之一,对等离子体稳定性和约束性能有重要影响。如何实现等离子体离子温度和旋转速度的快速精确测量,一直是聚变装置稳定高参数运行所面临的关键技术问题之一。近日,中国科学院合肥物质科学研究院的研究团队在等离子体关键参数诊断研究方面取得新进展。
10/16/2024 12:08:00 PM
ScienceAI
解读:物理诺贝尔奖为何颁给了HNN之父和深度学习之父?
就在刚刚,瑞典皇家科学院决定将 2024 年诺贝尔物理学奖授予约翰·J·霍普菲尔德 (John J. Hopfield) 和杰弗里·E·辛顿 (Geoffrey E. Hinton),“表彰他们通过人工神经网络实现机器学习的基础性发现和发明”。
10/10/2024 10:26:00 AM
刘洁
诺奖颁给交叉学科,对「AI for Science」意味着什么?
编辑 | X_X2024 年 10 月 8 日,诺贝尔物理学奖授予了两位 AI 领域的科学家,以表彰他们的发现。诺贝尔奖评审团表示,被誉为「人工智能教父」的英裔加拿大科学家 Geoffrey Hinton 和美国物理学家 John Hopfield 因「利用人工神经网络实现机器学习的发现和发明」而获得该奖。这一切意味着什么?Geoffrey Hinton 和 John Hopfield 的研究主要围绕人工神经网络(ANN)的发展,这是一种模仿人脑神经元连接方式的计算模型。Hinton 在深度学习领域的贡献尤其突出,
10/9/2024 4:46:00 PM
ScienceAI
使神经网络更容易理解,促进科学发现,MIT刘子鸣团队新架构
编译 | 白菜叶「神经网络是目前人工智能领域最强大的工具。」Perimeter Institute for Theoretical Physics 的研究员 Sebastian Wetzel 表示,「当我们将它们扩展到更大的数据集时,没有什么可以与之竞争。」然而,一直以来,神经网络都存在一个缺点。当今许多成功网络的基本构建模块被称为多层感知器(MLP)。但尽管取得了一系列成功,人类仍然无法理解基于这些 MLP 构建的网络是如何得出结论的,或者是否存在一些基本原理可以解释这些结果。神经网络所表现出的能力就像魔术师一样
9/19/2024 4:17:00 PM
ScienceAI
中国科学院开发出基于语义记忆的动态神经网络:相比静态最高减少 48.1% 计算量
中国科学院微电子研究所等将人工神经网络与大脑的动态可重构性相结合,开发出基于语义记忆的动态神经网络。▲ 基于语义记忆的脑启发动态神经网络硬件软件协同设计大脑神经网络具有复杂的语义记忆和动态连接性,可将不断变化的输入与庞大记忆中的经验联系起来,高效执行复杂多变的任务。目前,人工智能系统广泛应用的神经网络模型多是静态的。随着数据量不断增长,它在传统数字计算系统中产生大量能耗和时间开销,难以适应外界环境的变化。与静态网络相比,语义记忆动态神经网络能够根据计算资源权衡识别准确性和计算效率,可在资源受限设备或分布式计算环境中
9/1/2024 6:21:57 PM
沛霖(实习)
类脑计算有望彻底改变计算领域,甚至超越人脑,丰田合作综述类脑计算的兴起
编辑 | KX最近,微软系统故障导致全球大范围宕机。计算已经成为我们生活中不可或缺的一部分。然而,尽管计算机硬件和软件不断改进,但人类大脑仍然是我们所知的最复杂、最强大的计算机。人类大脑通过数十亿个神经元与数万亿个突触相互作用来共享其计算能力,因此,它不仅可以与最强大的超级计算机相媲美,而且由于其消耗的能量比冰箱中的灯亮所需能量还少,因此,人类大脑在效率方面毫无疑问胜过计算机。类脑计算是一个不断发展的跨学科研究领域,研究如何将生物大脑的计算原理转化为硬件设计,从而提高能源效率。类脑计算涵盖各种子领域,包括神经形态计
8/12/2024 1:57:00 PM
ScienceAI
数百万晶体数据训练,解决晶体学相位问题,深度学习方法PhAI登Science
编辑 | KX时至今日,晶体学所测定的结构细节和精度,从简单的金属到大型膜蛋白,是任何其他方法都无法比拟的。然而,最大的挑战——所谓的相位问题,仍然是从实验确定的振幅中检索相位信息。丹麦哥本哈根大学研究人员,开发了一种解决晶体相问题的深度学习方法 PhAI,利用数百万人工晶体结构及其相应的合成衍射数据训练的深度学习神经网络,可以生成准确的电子密度图。研究表明,这种基于深度学习的从头算结构解决方案方法,可以以仅 2 埃的分辨率解决相位问题,该分辨率仅相当于原子分辨率可用数据的 10% 到 20%,而传统的从头算方法通
8/8/2024 3:31:00 PM
ScienceAI
清华“太极-Ⅱ”光芯片面世:成果登 Nature,首创全前向智能光计算训练架构
据清华大学官方消息,清华大学电子工程系方璐教授课题组、自动化系戴琼海院士课题组另辟蹊径,首创了全前向智能光计算训练架构,研制了“太极-II”光训练芯片,实现了光计算系统大规模神经网络的高效精准训练。该研究成果以“光神经网络全前向训练”为题,于北京时间 8 月 7 日晚在线发表于《自然》期刊。AI在线查询获悉,清华大学电子系为论文第一单位,方璐教授、戴琼海教授为论文的通讯作者,清华大学电子系博士生薛智威、博士后周天贶为共同一作,电子系博士生徐智昊、之江实验室虞绍良博士参与了该项工作。该课题受到国家科技部、国家自然科学
8/8/2024 9:05:32 AM
汪淼
神经网络也有空间意识!学会在Minecraft创建地图,登上Nature子刊
这是人类首次证明神经网络可以创建自己的地图。想象一下,你身处一个陌生的小镇,即使一开始周围的环境并不熟悉,你也可以四处探索,并最终在大脑中绘制出一张环境地图,里面包含建筑物、街道、标志等相互之间的位置关系。这种在大脑中构建空间地图的能力是人类更高级认知类型的基础:例如,有理论认为,语言是由大脑中类似地图的结构编码的。然而, 即使是最先进的人工智能和神经网络,也无法凭空构建这样的地图。 计算生物学助理教授、Heritage Medical 研究所研究员 Matt Thomson 说:「有一种感觉是,即使是最先进的人工
7/23/2024 11:12:00 AM
机器之心
DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗
编辑 | X近百年前,狄拉克提出正电子概念,如今在医学物理、天体物理及材料科学等多个领域都具有技术相关性。然而,正电子-分子复合物基态性质的量子化学计算具有挑战性。在此,DeepMind 和伦敦帝国理工学院的研究人员,使用最近开发的费米子神经网络 (FermiNet) 波函数来解决这个问题,该波函数不依赖于基组。研究发现 FermiNet 可以在一系列具有各种不同定性正电子结合特性的原子和小分子中产生高度精确的、在某些情况下是最先进的基态能量。研究人员计算了具有挑战性的非极性苯分子的结合能,发现与实验值高度一致,并
7/12/2024 2:46:00 PM
ScienceAI
AlphaFold 3 向解码分子行为和生物计算迈出重要一步,Nature 子刊锐评
编辑 | KX如果我们完全了解分子之间是如何相互作用的,那么生物学就没什么可学的了,因为每一种生物现象,包括我们如何感知世界,最终都源于细胞内生物分子的行为和相互作用。最近推出的 AlphaFold 3 可以直接从蛋白质、核酸及其配体的序列中预测生物分子复合物的 3D 结构。这标志着我们在长期探索生物分子如何相互作用方面取得了重大进展。AlphaFold 3 代表了直接从复合物序列预测其三维结构的突破,为生物分子相互作用提供了见解。生物分子(如蛋白质或核酸)的一维 (1D) 序列以类似于一段代码指定程序的方式指定细
7/10/2024 2:55:00 PM
ScienceAI
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
模态
字节跳动
Claude
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
科技
亚马逊
智能体
DeepMind
特斯拉