Poseidon
偏微分方程有了基础模型:样本需求数量级减少,14项任务表现最佳
本文提出的 Poseidon 在样本效率和准确率方面都表现出色。偏微分方程(PDEs)被称为物理学的语言,因为它们可以在广泛的时间 - 空间尺度上对各种各样的物理现象进行数学建模。常用的有限差分、有限元等数值方法通常用于近似或模拟偏微分方程。然而,这些方法计算成本高昂,特别是对于多查询问题更是如此,因而人们设计了各种数据驱动的机器学习(ML)方法来模拟偏微分方程。其中,算子学习( operator learning)算法近年来受到越来越多的关注。然而,现有的算子学习方法样本效率并不高,因为它们需要大量的训练样例才能
6/11/2024 12:52:00 AM
机器之心
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
数据
机器人
大模型
Midjourney
开源
Meta
智能
用户
微软
GPT
学习
AI新词
技术
智能体
马斯克
Gemini
图像
AI创作
英伟达
Anthropic
训练
论文
代码
LLM
算法
Stable Diffusion
芯片
腾讯
苹果
AI for Science
Claude
蛋白质
Agent
开发者
生成式
神经网络
xAI
机器学习
3D
研究
人形机器人
生成
AI视频
百度
工具
计算
RAG
大语言模型
GPU
华为
Sora
具身智能
AI设计
字节跳动
搜索
大型语言模型
AGI
场景
深度学习
视频生成
预测
视觉
架构
伟达
Transformer
DeepMind
编程
神器推荐
AI模型
亚马逊
特斯拉