Poseidon
偏微分方程有了基础模型:样本需求数量级减少,14项任务表现最佳
本文提出的 Poseidon 在样本效率和准确率方面都表现出色。偏微分方程(PDEs)被称为物理学的语言,因为它们可以在广泛的时间 - 空间尺度上对各种各样的物理现象进行数学建模。常用的有限差分、有限元等数值方法通常用于近似或模拟偏微分方程。然而,这些方法计算成本高昂,特别是对于多查询问题更是如此,因而人们设计了各种数据驱动的机器学习(ML)方法来模拟偏微分方程。其中,算子学习( operator learning)算法近年来受到越来越多的关注。然而,现有的算子学习方法样本效率并不高,因为它们需要大量的训练样例才能
6/11/2024 12:52:00 AM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
智能体
技术
Gemini
马斯克
英伟达
Anthropic
图像
AI创作
训练
LLM
论文
代码
算法
AI for Science
苹果
Agent
腾讯
Claude
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
Sora
研究
百度
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
AI模型
亚马逊
特斯拉
场景
深度学习
架构
Transformer
MCP
Copilot
编程
视觉