MetaFAIR
挑战传统:无归一化层的 Transformer 架构新突破
在深度学习领域,归一化层被视为现代神经网络中不可或缺的组件之一。 最近,一项由 Meta FAIR 研究科学家刘壮主导的研究成果 ——“没有归一化层的 Transformer” 引发了广泛关注。 这项研究不仅提出了一种名为动态 tanh(Dynamic Tanh,DyT)的新技术,还展示了在不使用传统归一化层的情况下,Transformer 架构依然可以实现高效的训练和推理。
3/14/2025 4:06:00 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
大模型
机器人
数据
Midjourney
开源
Meta
AI新词
微软
智能
用户
GPT
学习
技术
智能体
马斯克
Gemini
图像
Anthropic
英伟达
AI创作
训练
LLM
论文
代码
算法
Agent
AI for Science
芯片
苹果
Claude
腾讯
Stable Diffusion
蛋白质
开发者
生成式
神经网络
xAI
机器学习
3D
RAG
人形机器人
AI视频
研究
大语言模型
生成
具身智能
Sora
工具
GPU
百度
华为
计算
字节跳动
AI设计
大型语言模型
AGI
搜索
视频生成
场景
深度学习
架构
生成式AI
DeepMind
编程
亚马逊
视觉
Transformer
AI模型
预测
特斯拉
MCP