MetaFAIR
挑战传统:无归一化层的 Transformer 架构新突破
在深度学习领域,归一化层被视为现代神经网络中不可或缺的组件之一。 最近,一项由 Meta FAIR 研究科学家刘壮主导的研究成果 ——“没有归一化层的 Transformer” 引发了广泛关注。 这项研究不仅提出了一种名为动态 tanh(Dynamic Tanh,DyT)的新技术,还展示了在不使用传统归一化层的情况下,Transformer 架构依然可以实现高效的训练和推理。
3/14/2025 4:06:00 PM
AI在线
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
谷歌
AI绘画
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
AI新词
图像
Gemini
智能体
马斯克
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
苹果
蛋白质
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
人形机器人
生成
AI视频
百度
工具
计算
Sora
GPU
华为
大语言模型
RAG
具身智能
AI设计
字节跳动
搜索
大型语言模型
场景
AGI
深度学习
视频生成
预测
视觉
伟达
架构
Transformer
编程
神器推荐
DeepMind
亚马逊
特斯拉
AI模型