退化
如何通过机器学习算法,将EV电池运用到极致?
编译 / 刘梦婷近日,剑桥大学的研究人员开发了一种机器学习算法,可以通过预测不同的驾驶模式对电池性能的影响,帮助电动车减少充电时间,延长电池寿命,提高安全性和可靠性。研究结果发表在《自然通讯》(Nature Communications)杂志上。该团队开发了一种非侵入式方法来检测电池,并获得电池整体健康状况。然后,将这些结果输入机器学习算法,该算法可以预测不同驾驶模式将如何影响电池未来的健康状况。研究人员表示,该算法可以通过建议路线和驾驶模式,最大限度地减少电池退化和充电时间,来充分利用电动汽车的电池。如果将其用于
8/25/2022 12:48:00 PM
机器智行
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP