AI在线 AI在线

算法

抽卡效率提升4.8倍!东北大学等开源优化版Stable-Diffusion.cpp:分辨率越高越快,生成质量更好

在AI生成图像领域,Stable Diffusion已经成为一个里程碑式的工具,凭借其强大的图像生成能力,被广泛应用于艺术创作、商业设计等领域。 然而,生成高质量图像的过程常常需要付出大量的时间和内存,这对于硬件资源有限的设备来说是一大挑战。 为了应对这一问题,北京大学、东北大学、佐治亚大学发布了Stable-Diffusion.cpp(简称Sdcpp)的优化方法,引入了Winograd算法和三个优化策略,最终整图生成速度最高可达到4.79倍,从此实现创作自由!
12/23/2024 9:10:00 AM
新智元

大模型超强内存优化:成本削减高达75%,性能不减弱!成果出自日本一初创AI公司之手;网友:电力可能够用了!

出品 | 51CTO技术栈(微信号:blog51cto)一项逆天的大模型优化技术来了! 东京初创公司Sakana AI的研究人员开发了一种新技术,让大模型能够更有效地使用内存,不仅最多节省75%的内存占用,还甚至性能也有所提升! 这种名为“通用Transformer内存”的技术使用特殊的神经网络优化LLM,保留重要的信息并丢弃冗余的细节。
12/18/2024 1:24:55 PM

北大开源全新图像压缩感知网络:参数量、推理时间大幅节省,性能显著提升 | 顶刊TPAMI

压缩感知(Compressed Sensing,CS)是一种信号降采样技术,可大幅节省图像获取成本,其核心思想是「无需完整记录图像信息,通过计算即可还原目标图像」。 CS的典型应用包括:降低相机成本:利用廉价设备就能拍摄出高质量图像;加速医疗成像:将核磁共振成像(MRI)时间从40分钟缩短至10分钟内,减少被检查者的不适;探索未知世界,助力科学研究:将「看不见」的事物变为「看得见」,如观测细胞活动等转瞬即逝的微观现象,以及通过分布式射电望远镜观测银河系中心的黑洞。 CS的两个核心问题是:如何设计采样矩阵,从而尽可能多地保留图像信息?
12/17/2024 1:08:20 PM
新智元

精度提升20%,中科院、南京理工AI方法进行光电子能谱高维数据精细解析

编辑丨ScienceAI无监督聚类算法在划分 Nano-ARPES(ARPES:角分辨光电子能谱)空间映射数据集方面表现出强大的能力。 然而,在区分细微的能带差异方面则表现欠佳。 在最新的研究中,中国科学院高能物理研究所的研究团队与南京理工大学的科研人员合作开发了一种多阶段无监督聚类算法(Multi-Stage Clustering Algorithm,MSCA)。
12/16/2024 2:05:00 PM
ScienceAI

3DDFA-V3:引领三维人脸重建新纪元

一、引言从二维图像中重建三维人脸是计算机视觉和图形学领域的一项重要任务,它在虚拟现实(VR)、增强现实(AR)、计算机生成图像(CGI)等领域有着广泛的应用。 近年来,随着深度学习技术的不断发展,三维人脸重建技术取得了显著的进步。 本文将对最新提出的3DDFA-V3算法进行详细介绍,展示其如何凭借创新的几何引导策略和面部区域分割技术,实现高精度和高鲁棒性的三维人脸重建。
12/12/2024 8:28:11 AM
AGI

终于把图神经网络算法搞懂了!!!

今天给大家分享一个强大的算法模型,GNN。 图神经网络(GNN)是一类专门处理图结构数据的深度学习模型。 在传统的深度学习中,输入数据通常是结构化的(如图像、文本、时间序列等),这些数据都可以表示为一个规则的网格或序列。
12/12/2024 12:29:03 AM
程序员小寒

RARE: 提升LLM推理准确性和事实完整性的检索增强框架思路浅尝

MCTS & rStar蒙特卡洛树搜索(MCTS)蒙特卡洛树搜索(MCTS)是一种用于解决复杂决策问题的算法,常用于游戏等领域。 它的基本思想是通过构建一棵搜索树并模拟各种可能的行动来估计每个行动的价值。 MCTS的过程可以分为四个主要步骤:选择(Selection):从根节点开始,根据某种策略(如UCT)遍历子节点,直到找到一个叶节点。
12/11/2024 8:12:24 AM
余俊晖

十大必知的人工智能算法

随着人工智能技术(AI)的日益普及,各种算法在推动这一领域的发展中发挥着关键作用。 从预测房价的线性回归到自动驾驶汽车的神经网络,这些算法在背后默默支撑着无数应用的运行。 今天,我们将带您一览这些热门的人工智能算法(线性回归、逻辑回归、决策树、朴素贝叶斯、支持向量机(SVM)、集成学习、K近邻算法、K-means算法、神经网络、强化学习Deep Q-Networks  ),探索它们的工作原理、应用场景以及在现实世界中的影响力。
12/3/2024 1:19:47 PM
花哥

终于把 LSTM 算法搞懂了!!!

今天给大家分享一个强大的算法模型,LSTMLSTM(长短期记忆网络)是一种特殊类型的循环神经网络(RNN),它能够有效地解决传统 RNN 在处理长序列时遇到的梯度消失和梯度爆炸问题。 LSTM 的核心思想是通过多个门控机制来控制信息的流动,这些门控机制可以选择性地保留或丢弃输入数据,从而帮助网络捕捉长时间跨度的依赖关系。 LSTM的工作原理LSTM 的核心思想是通过引入记忆单元来存储信息,并使用三个主要的门(输入门、遗忘门、输出门)来决定哪些信息应该保留,哪些信息应该遗忘,以及哪些信息应该更新。
12/3/2024 8:16:57 AM
程序员小寒

人工智能的“记忆”:个人和组织的革命性生产力

随着人工智能的不断发展,一个概念脱颖而出,成为实现个性化体验的关键:记忆(Memory)。 在Madrona与微软人工智能首席执行官Mustafa Suleyman的IA峰会炉边谈话中,他强调记忆不仅是一种功能,而且是一种重塑人工智能与人类互动方式的变革力量。 记忆使人工智能不仅可以结合智商(IQ),还可以结合情商(EQ),从而创造一种更有意义、更像人类的关系。
12/2/2024 2:30:46 PM
AI情报室

NeurIPS 2024 | 数学推理场景下,首个分布外检测研究成果来了

本文将介绍数学推理场景下的首个分布外检测研究成果。 该篇论文已被 NeurIPS 2024 接收,第一作者王一鸣是上海交通大学计算机系的二年级博士生,研究方向为语言模型生成、推理,以及可解释、可信大模型。 该工作由上海交通大学和阿里巴巴通义实验室共同完成。
12/2/2024 1:30:00 PM
机器之心

审稿人直呼简洁,单点PageRank终极版!人大STOC论文让复杂度优化至「理论最优」

在信息爆炸的互联网时代,应如何根据重要性对搜索得到的网页进行排名并呈现给用户? 这个问题困扰了无数早期的搜索引擎。 破局者来自Google,创始人Sergey Brin和Lawrence Page提出的网页排名算法PageRank为这个难题提供了一个开创性的解决方案:为每个网页都计算了一个重要性得分,即PageRank得分,得分越高表示该网页质量越好,在信息检索时的重要性越高。
11/29/2024 2:00:07 PM
新智元

扩散模型=进化算法!生物学大佬用数学揭示本质

扩散模型居然就是生物的进化算法! 这个结论来自「新常春藤」塔夫茨大学(Tufts University)于近日发表的一项研究:论文地址: Levin,博士毕业于哈佛大学,目前担任塔夫茨大学Allen Discovery Center主任。 Michael Levin长期从事生物电、人工生命和许多其他生物学相关主题的研究,曾在NeurIPS 2018上发表了题为「What Bodies Think About:Bioelectric Computation Outside the Nervous System」的精彩演讲:视频地址: 2020上,Michael Levin还阐述了有关「机器人癌症」的话题:「what the bioelectrics of embryogenesis and regeneration can teach us about unconventional computing, cognition, and the software of life」。
11/26/2024 9:30:00 AM
新智元

AdaBoost分类器完全图解

译者 | 朱先忠审校 | 重楼本文将通过完整的源码与图解方式向你展示AdaBoost算法运行逻辑,并指出其优点与不足,还将其与随机森林算法进行对比分析。 简介每个人都会犯错,即使是机器学习领域最简单的决策树也存在这个问题。 AdaBoost(自适应增强)算法不会忽略这些错误,而是会做一些不同的事情:它会从这些错误中学习(或适应)以变得更好。
11/20/2024 8:29:26 AM
朱先忠

澳门大学最新!CVPR'24 ALOcc:自适应再出山,精度与速度的完美均衡!

写在前面 & 笔者的个人理解基于视觉的语义占用和流量预测在为自动驾驶等现实世界任务提供时空线索方面发挥着至关重要的作用。 现有方法优先考虑更高的精度,以满足这些任务的需求。 在这项工作中,通过引入一系列针对3D语义占用预测和流量估计的有针对性的改进来提高性能。
11/19/2024 9:40:00 AM
Dubing Chen等

终于把 Seq2Seq 算法搞懂了!!

Seq2Seq(Sequence-to-Sequence)模型是一种用于处理序列数据的神经网络架构,广泛应用于自然语言处理(NLP)任务,如机器翻译、文本生成、对话系统等。 它通过编码器-解码器架构将输入序列(如一个句子)映射到输出序列(另一个句子或序列)。 图片模型结构Seq2Seq 模型由两个主要部分组成。
11/14/2024 12:16:46 AM
程序员小寒

快速学会一个算法,卷积神经网络

大家好,我是小寒今天给大家介绍一个强大的算法模型,卷积神经网络卷积神经网络(CNN)是一种专门用于处理图像、视频等具有网格结构数据的深度学习模型。 CNN 通过局部连接和参数共享的方式,大幅减少了模型的计算量,能有效提取数据的局部和全局特征,被广泛应用于计算机视觉领域,如图像分类、物体检测、图像分割等。 图片卷积神经网络的基本结构卷积神经网络的主要包括卷积层、池化层和全连接层。
11/11/2024 12:00:02 AM
程序员小寒

AI开源项目 | FastGPT- 深入解析 FastGPT 的知识库逻辑与检索机制:让 AI 更聪明的秘密

如何让 AI 更加智能化、精准化,成为了研究者和开发者们关注的焦点。 FastGPT 作为一款前沿的 AI 模型,其知识库逻辑与检索机制无疑是其成功的关键所在。 本文将为您详细解析 FastGPT 的知识库逻辑与检索机制,并结合知识库的特性,提供实用的教学意义,帮助您更好地理解这一技术背后的原理与应用。
11/5/2024 1:16:11 PM
hpstream