MTU3D
ICCV 2025满分论文:一个模型实现空间理解与主动探索大统一
本论文核心团队来自北京通用人工智能研究院机器学习实验室,团队负责人李庆博士长期从事多模态理解、多模态智能体、具身智能等方向,主页:,人工智能正逐步从虚拟的互联网空间(Cyber Space)迈向真实的物理世界(Physical Space)[1]。 这一转变的核心挑战之一,是如何赋予智能体对三维空间的理解能力 [2],实现自然语言与真实物理环境的对齐(grounding)。 尽管已有的 3D 空间理解模型在视觉感知和语言对齐方面取得了显著进展,但它们普遍依赖于静态的世界的观察,缺乏对主动探索行为的建模。
7/14/2025 11:18:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
智能
开源
微软
Meta
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
Anthropic
代码
英伟达
算法
Stable Diffusion
智能体
训练
芯片
开发者
蛋白质
生成式
腾讯
苹果
AI新词
神经网络
3D
Claude
研究
LLM
生成
机器学习
计算
Sora
AI for Science
人形机器人
AI视频
AI设计
GPU
xAI
华为
百度
搜索
大语言模型
Agent
场景
字节跳动
预测
深度学习
伟达
大型语言模型
工具
Transformer
视觉
RAG
神器推荐
具身智能
亚马逊
Copilot
模态
AGI
LLaMA
文本
算力
驾驶