SRDTrans
以自监督方式去除荧光图像中的噪声,清华团队开发了空间冗余去噪Transformer方法
编辑 | 萝卜皮具有高信噪比的荧光成像已成为生物现象精确可视化和分析的基础。然而,不可避免的噪声对成像灵敏度提出了巨大的挑战。清华大学的研究团队提供了空间冗余去噪 Transformer(SRDTrans),以自监督的方式去除荧光图像中的噪声。该团队提出了基于空间冗余的采样策略来提取相邻的正交训练对,消除了对高成像速度的依赖。然后,他们设计了一种轻量级时空 Transformer 架构,以较低的计算成本捕获远程依赖性和高分辨率特征。SRDTrans 可以恢复高频信息,而不会产生过度平滑的结构和扭曲的荧光痕迹。并且,
2/16/2024 4:20:00 PM
ScienceAI
- 1
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
机器人
数据
大模型
Midjourney
开源
智能
Meta
用户
微软
GPT
学习
技术
图像
Gemini
智能体
马斯克
AI新词
AI创作
Anthropic
英伟达
论文
训练
代码
算法
LLM
Stable Diffusion
芯片
腾讯
蛋白质
苹果
Claude
开发者
AI for Science
Agent
生成式
神经网络
机器学习
3D
xAI
研究
生成
人形机器人
AI视频
百度
计算
工具
Sora
GPU
大语言模型
华为
RAG
AI设计
字节跳动
具身智能
搜索
大型语言模型
场景
深度学习
AGI
视频生成
预测
视觉
伟达
架构
Transformer
神器推荐
DeepMind
亚马逊
特斯拉
编程
MCP