SNN
AAAI2025 | 频域+注意力双加持!SNN性能飙升33%,刷新多项SOTA纪录!
一眼概览FSTA-SNN 提出了一种频域驱动的时空注意力模块(FSTA),显著提升脉冲神经网络(SNN)的特征学习能力与能效,在多个数据集上实现了更优性能和更低的脉冲发放率。 核心问题当前 SNN 在信息稀疏表示方面虽具能效优势,但其中间脉冲输出存在冗余且缺乏系统分析,导致特征提取能力受限、性能不稳定。 论文核心关注的问题是:如何在不增加能耗的前提下,抑制冗余脉冲、增强关键特征提取能力,从而提升 SNN 的整体性能与鲁棒性。
4/28/2025 3:45:00 AM
萍哥学AI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
DeepMind
特斯拉