AI在线 AI在线

任务

复旦邱锡鹏:深度剖析 ChatGPT 类大语言模型的关键技术

内容来源:ChatGPT 及大模型专题研讨会分享嘉宾:复旦大教授 邱锡鹏分享主题:《对话式大型语言模型》转载自CSDN稿件ChapGPT 自问世以来,便展现出了令世人惊艳的对话能力。仅用两个月时间,ChatGPT 月活跃用户就达一亿,是史上用户增速最快的消费应用。对于学术界、工业界、或是其他相关应用来说都是一个非常大的机会和挑战。事实上,ChatGPT 的成功并不是偶然结果,其背后多有创新之处。本文整理于达观数据参与承办的「ChatGPT 及大模型专题研讨会」上,复旦大学邱锡鹏教授带来的《对话式大型语言模型》主题分
3/23/2023 3:20:00 PM
达观数据

ChatGPT真的是「通才」吗?杨笛一等人给它来了个摸底考试

ChatGPT 真的是「通才」吗?单拎出哪项能力都能完胜其他模型吗?哪些任务是 ChatGPT 擅长的,哪些不是?为了系统地探索这些问题,南洋理工大学博士生 Chengwei Qin、斯坦福大学计算机科学助理教授杨笛一等人进行了大量实验。
2/15/2023 2:17:00 PM
机器之心

噪声总是有害吗?西工大李学龙教授提出基于任务熵的数学分析框架

李学龙教授在 IEEE 期刊上在线发表 “正激励噪声”《Positive-Incentive Noise》。
1/6/2023 2:31:00 PM
机器之心

超越现有指标57.3%,邢波教授、胡志挺教授团队提出统一NLG评价框架

长期以来,评价机器生成的文本比较困难。近日,CMU邢波(Eric Xing)教授和UCSD胡志挺(Zhiting Hu)教授的团队提出用一种运算符,统一各类生成任务的评价方式,为未来各种新任务、新要求提供了更加统一的指导。实验表明,基于统一框架设计的评价指标,在多个任务上超过了现有指标与人工评分的相似度,现在通过PyPI和GitHub可以直接调用。
1/28/2022 5:12:00 PM
机器之心

一个模型处理多种模态和任务,商汤等提出Uni-Perceiver,迈向通用预训练感知模型

来自商汤、西安交通大学等机构的研究者提出了一种通用感知架构 Uni-Perceiver ,该方法可以更好地将预训练中学到的知识迁移到下游任务中。
12/12/2021 12:47:00 PM
机器之心