基于
分子100%有效,从头设计配体,湖南大学提出基于片段的分子表征框架
编辑 | KX分子描述符广泛应用于分子建模,但在 AI 辅助分子发现领域,缺乏自然适用、完整且「原始」的分子表征是一个挑战,影响 AI 模型的性能和可解释性。在使用先进的自然语言处理(NLP)方法解决化学问题时,会出现两个基本问题:(1)什么是「化学词」?(2)如何将它们编码为「化学句子」?近日,湖南大学研究团队提出了一种灵活的、基于片段的多尺度分子表征框架 t-SMILES 的框架来解决第二个问题。该框架使用 SMILES 类型的字符串描述分子,并且可以将基于序列的模型作为主要生成模型。t-SMILES 具有三种
7/5/2024 2:44:00 PM
ScienceAI
ICLR 2023 Spotlight | Yoshua Bengio团队新作,生成拓展流网络
本工作已入选 ICLR 2023 Spotlight,也是 GFlowNets 领域第一篇 Spotlight 文章。
5/3/2023 5:55:00 PM
机器之心
基于特征、模型的可解释方案在蚂蚁集团安全风控的应用
可解释性相关算法作为蚂蚁集团提出的“可信AI”技术架构的重要组成部分,已大量应用于蚂蚁集团安全风控的风险识别、欺诈举报审理等场景,取得了一些阶段性的成果。本系列文章,我们将以风控领域具体应用为例,尤其关注领域专家经验和机器学习方法的交互结合,介绍蚂蚁集团特征可解释、图可解释、逻辑可解释等算法方案的探索和落地。专家点评:李琦 清华大学副教授,博士生导师,ACM SIGSAC China副主席 AI可解释性是实现安全可信AI的关键技术,近年来得到学术界和工业界的广泛关注,具有非常好的研究与应用前景。蚂蚁集团在可解释A
4/25/2022 4:25:00 PM
新闻助手
产业实践推动科技创新,京东科技集团3篇论文入选ICASSP 2021
ICASSP 2021将于2021年6月6日-11日在加拿大多伦多拉开序幕,凭借在语音技术领域的扎实积累和前沿创新,京东科技集团的3篇论文已经被 ICASSP 2021接收。
8/25/2021 2:47:00 PM
京东科技开发者
AAAI 2021论文:Graph Diffusion Network提升交通流量预测精度(附论文下载)
城市流量预测作为智能交通中的一个重要问题,致力于精确预测城市中不同区域的流量信息,从而更好地实现区域间的流量管控、拥塞控制以及保障城市公共安全。本文将介绍一种基于时空图扩散网络的城市交通流量预测模型。本文工作是由京东数科硅谷研发实验室,京东城市和华南理工大学合作的一篇论文《Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network》,目前该论文已经被人工智能领域的顶级会议AAAI 2021(CCF A类)接收。
8/11/2021 3:44:00 PM
京东科技开发者
基于会话推荐系统最新长文综述,163篇参考文献,已被ACM Computing Surveys接收
基于会话的推荐系统,作为一种新兴的推荐系统范式,正方兴未艾,大量的新技术和新方法层出不穷。这篇综述给读者在关于这个领域的主要问题、关键挑战、最新进展以及主要方法和应用等方面提供了一个综合而全面的认知。
5/23/2021 12:37:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
模型
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Stable Diffusion
Gemini
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind