换装
中山大学联合字节智创数字人团队提出MMTryon虚拟试穿框架,效果优于现有SOTA
虚拟换装技术在特效以及电商的场景下有着广泛的应用,具有较高的商业潜质与价值。近期,中山大学联合字节跳动智能创作数字人团队提出了一种多模态多参考虚拟试穿 (VITON) 框架 MMTryon,可以通过输入多个服装图像及指定穿法的文本指令来生成高质量的组合试穿结果。对于单图换装,MMTryon有效的利用了大量的数据设计了一个表征能力强大的服装编码器, 使得该方案能处理复杂的换装场景及任意服装款式;对于组合换装,MMTryon消除了传统虚拟换装算法中对服装精细分割的依赖,可依靠一条文本指令从多张服装参考图像中选择需要试穿
7/8/2024 3:42:00 PM
新闻助手
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
模型
数据
机器人
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
图像
AI创作
技术
论文
Gemini
Stable Diffusion
马斯克
算法
蛋白质
芯片
代码
生成式
英伟达
腾讯
神经网络
研究
计算
Anthropic
3D
Sora
AI for Science
AI设计
机器学习
开发者
GPU
AI视频
华为
场景
人形机器人
预测
百度
苹果
伟达
Transformer
深度学习
xAI
Claude
模态
字节跳动
大语言模型
搜索
驾驶
具身智能
神器推荐
文本
Copilot
LLaMA
算力
安全
视觉
视频生成
训练
干货合集
应用
大型语言模型
亚马逊
科技
智能体
AGI
DeepMind