AI for Science:人工智能改变化学领域,呆板进修范式加速化学物质发觉

随着人工智能技术兴起,在化学领域,传统的鉴于尝试和物理模型的方式逐渐与鉴于数据的呆板进修范式融合。越来越多的用于估计机处理数据表现被开发出来,并不断适应着以天生式为主的统计模型。

图片

虽然工程、金融和商业从新算法中获益匪浅,但获益不仅仅来自算法。几十年来,大规模估计一直是物理科学工具包中不可或缺的一部分 —— 人工智能的一些最新进展已经开始改变科学发觉的产生方式。物理科学领域的杰出成就令人兴奋不已,例如应用呆板进修渲染黑洞图像或 AlphaFold 对蛋白质折叠的贡献。本文将介绍人工智能在化学领域的一些更突出的用途,而化学是上述蛋白质折叠成绩的母学科。化学的主要目标之一是了解物质、它的性质以及它可以经历的变化。比如,当我们在寻找新的超导体、疫苗或任何其他具有我们想要特性的材料时,我们会求助于化学这一学科。传统上,我们认为化学是在配有试管、烧瓶和燃气燃烧器的尝试室中完成。但它也受益于估计和量子力学的发展,这两者都在 20 世纪中叶开始崭露头角。早期的应用包括应用估计机来帮助解决鉴于物理的公式估计;或者是通过将理论化学与估计机编程相结合,我们能够模拟(尽管远非完美)化学系统。最终,这项工作发展成为现在称为估计化学(computational chemistry)的子领域。该子领域在 1970 年代开始兴起发展,并在 1998 年和 2013 年有人凭借该领域获得诺贝尔奖。即便如此,尽管估计化学在过去几十年中获得了越来越多的认可,但其重要性远没有在尝试室所做的尝试重要,而尝试才是化学发觉的基石。然而,随着当前人工智能、以数据为中心的技术和不断增长的数据量的进步,我们大概正在目睹一种变化,估计方式不仅用于协助尝试室尝试,还用于指导尝试化学物质发觉过程那么人工智能是如何实现这种转变的呢?一个特别的发展是将呆板进修应用于材料发觉和份子计划,这是化学中的两个核心成绩。在传统方式中,份子的计划大致分为四个阶段,如下图所示。需要注意的是,每个阶段都大概需要数年时间和许多资源,并且不能保证成功。

图片

化学物质发觉阶段:发觉(discovery)、合成、分离与测试(synthesis, isolation and testing)、验证(validation)以及批准与市场营销(approval and marketing)。发觉阶段依赖于几个世纪以来发展起来的用来指导份子计划的理论框架。然而,在寻找「有用」的材料(例如凡士林、铁氟龙、青霉素)时,我们必须记住,其中许多来自自然界中常见的化合物。此外,这些化合物的效用往往是事后才发觉的。与此相反,有针对性的搜刮是一项需要更多时间和资源的工作(即使那样,人们也大概不得不应用已知的「有用」化合物作为起点)。为了给读者一些概念,据估计,药理活性化学空间(即份子的数量)为 1060!即使在测试和扩展阶段之前,在这样的空间中手动搜刮也会花费大量时间和资源。那么人工智能是如何进入这一切并加速化学(物质)发觉的呢?首先,呆板进修改进了现有的模拟化学环境的方式。我们已经提到估计化学同意我们部分绕过尝试室尝试。然而,模拟量子力学过程的估计化学的估计在估计成本和化学模拟的准确性方面都很差。估计化学的核心成绩是求解复杂份子的电子薛定谔方程 —— 也就是说,给定原子核集合的位置和电子总数,估计感兴趣的性质。只有单电子系统才有大概得到精确的解决方案,而对于其他系统,我们必须依赖「足够好」的近似值。此外,许多用于近似薛定谔方程的流行方式以指数方式扩展,使得蛮力解决方案难以解决。在上个世纪,人们开发了许多方式来加速估计而不牺牲太多的准确性。然而,即使是一些「更便宜」的方式也大概导致估计瓶颈。人工智能加速这些估计的一种方式是将它们与呆板进修相结合。另一种方式通过直接将份子表证映射到所需属性来完全绕过物理过程的建模。这两种方式都同意化学家更有效地检查化学数据库的各种属性,例如原子电荷、电离能等。天生式化学的兴起虽然更快的估计是一种改进,但它并没有解决我们仍然局限于已知化合物的事实 —— 这只是活性化学空间的一小部分。我们仍然必须手动指定想要分析的份子。我们如何扭转这种范式并计划一种算法来搜刮化学空间并为我们找到合适的候选物质呢?答案大概在于将天生模型应用于份子发觉成绩。但在我们开始之前,有必要谈谈如何以数字方式表现化学布局(以及哪些可以用于天生式建模)。在过去的几十年中已经开发了许多种表现,其中大部分属于以下四个类别之一,分别是字符串(string)、文本文件(text )、阵列(array)和图(graph)。

图片

异戊烷的表现。当然,化学布局可以表现为阵列。最初,份子的阵列表现用于辅助化学数据库的搜刮;然而 2000 年代初期引入了一种称为扩展连接指纹 (Extended connectivity fingerprint, ECFP) 的新型阵列表现。ECFP 被专门计划用于捕获与份子活动相关的特征, 它通常被认为在尝试预计份子特性方面的第一批表征之一。化学布局信息也可以转储到文本文件中 —— 这是量子化学估计的常见输出。这些文本文件可以包含非常丰富的信息,但是,它们作为呆板进修模型的输入通常不是很有用。另一方面,字符串表现在其语法中编码了很多信息。这使得它们特别适合天生建模,很像文本天生。最后,鉴于图的表现更加自然,它不仅同意我们在节点嵌入中编码特定于原子的属性,而且还可以捕获边缘嵌入中的化学键。此外,当与消息传递相结合时,图表征同意我们解释(和配置)来自其邻居的节点对节点的影响,这反映了化学布局中原子如何相互影响。这些属性使鉴于图的表现成为深度进修模型的首选输入表现类型。上面的表现类型可以有自己的子类型;遗憾的是,对于任何特定成绩,哪种表现最有效也没有定论。例如,数组表现通常是属性预计的首选,但图表现在过去几年中也成为了强有力的竞争者。同样需要注意的是,我们可以根据成绩将多种类型的表现结合应用。那么如何(以及哪些)表现可以用于探索化学空间?我们已经提到字符串表现适用于天生建模。图表现起初不太容易应用天生模型建模,但最近由于和变分自动编码器 (VAE) 的结合使它而成为强有力的竞争者;VAE 已被证明特别有用,因为它使我们能够拥有连续的、呆板可读性更高的表现。一项研究应用 VAE 表明字符串和图表现都可以编码和解码到隐空间中,在该空间中,份子不再是离散的,而是可以解码回离散份子表现的实值连续向量(该向量大概有效也大概无效); 不同向量之间的欧几里得距离将对应于化学相似性。在编码器和解码器之间添加了另一个模型,去预计隐空间中任何点的目标属性。

图片

连续隐空间中鉴于梯度的优化。训练后的模型 f (z) 相对于隐变量 z 进行了优化,从而可以找到一个新的 z,使新的隐向量表现具有更高的属性分数。但是,虽然天生份子本身是一项简单的任务 —— 人们可以采用任何天生模型并将其应用于他们想要的表现 —— 天生化学上有效并表现出我们想要的特性的布局是一个更具挑战性的成绩。实现这一目标的最初方式涉及在现有数据集上预训练模型,然后将其用于迁移进修。通过校准数据集对模型进行调整以同意天生偏向特定属性的布局,之后可以应用不同的算法(例如强化进修)进一步校准。这方面的几个例子涉及应用字符串或图表现;然而在化学有效性方面遇到了困难,或者不能成功获得想要的属性。此外,依赖预训练数据集会限制搜刮空间并引入大概不需要的偏差。摆脱预训练的一种尝试是应用马尔可夫决策过程 (MDP) 来确保化学布局的有效性,并通过深度 Q 进修(Q-learning)来优化 MDP 以获得所需的属性。该模型的一个特别优点是它同意用户可视化不同行为的好感度。下图显示了这个想法在实践中是如何实现的;模型认为有利的增量步骤是从起始布局开始的,以最大化特定属性。

图片

(a) 可视化某些行为的偏爱程度(1 是最偏爱,0 是最不偏爱),虚线表现去除键,实线表现第一步中键的添加。(b) 为使起始份子的药物相似性定量估计 (QED) 最大化而采取的步骤,其步骤以黄色显示。尽管还处于起步阶段,但应用人工智能探索化学空间已经显示出巨大的前景。它为我们提供了探索化学空间的新范式,以及一种新的检验理论和假设的方式。虽然经验主义不像尝试研究那样准确,但使在可预见的未来,鉴于估计的方式仍将是一个活跃的研究领域,并且已经成为任何研究团队的一部分。其它应用案例以及面临的挑战到目前为止,我们已经讨论了 AI 如何通过利用天生算法来搜刮化学空间,从而帮助更快地发觉新化学物质。虽然这是最值得注意的用例之一,但并不仅限于此。人工智能正被应用于化学中的许多其他成绩,其中包括:

尝试室中的自动化工作。我们可以应用呆板进修技术来加速合成工作流程。一种方式应用 “自动驾驶尝试室” 来自动化日常任务、优化资源支出并节省时间。一个相对较新的,但值得注意的案例是应用呆板人平台 Ada 来自动化薄膜材料的合成、处理和特征化(请参阅此处的平台)。另一项研究展示了应用移动呆板人化学家能够操作仪器,并在八天内对 688 次尝试进行测量;

化学反应预计。我们可以应用分类模型来预计将发生的反应类型,或者简化成绩并预计某个化学反应是否会发生。这个成绩有很多不同的建模方式;

化学数据挖掘。像许多其他学科一样,化学有大量可用于研究趋势和相关性的科学文献。一个值得注意的例子是对人类基因组计划提供的大量信息进行数据挖掘,以识别基因组数据的趋势。

最后,虽然新的鉴于数据驱动的趋势正在迅速发展并已经产生很大的影响,但它也给我们带来了许多新挑战,包括:

估计和尝试之间的差距。虽然估计方式的目标是帮助实现尝试的目标,但前者的结果并不总是可以迁移到后者。例如,在应用呆板进修寻找候选份子时,我们必须牢记份子在其合成途径中很少是独一无二的,而且通常很难知道未经探索的化学反应是否会在实践中起作用。即便可以起作用,目标化合物的收率、纯度和分离也存在成绩。估计工作和尝试工作之间的差距甚至会变得更大,因为估计方式所采用的指标并不总是可以转移到后者(上面提到的 QED 只是众多例子中的一个)上,而且尝试验证大概不可行;

需要更好的数据库和缺乏基准。由于整个化学空间是无限的,所以我们最希望有足够大的样本量来帮助我们进行之后的泛化。然而,目前大多数数据库都是为不同目的而计划的,它们通常应用不同的文件格式;其中一些缺乏提交的验证程序,或者它们在计划时没有考虑到人工智能的任务。此外,我们拥有的大多数数据库的化学数据范围有限 —— 它们只包含某些类型的份子。最后,大多数涉及应用人工智能进行化学预计的任务都缺乏一个基准平台,这使得许多不同研究的比较变得不可行。AlphaFold 成功的主要原因之一是它提供了上述所有内容作为蛋白质布局预计 (CASP) 竞赛的关键评估的一部分,这表明需要有组织的努力来简化和改进涉及化学预计的其他任务。

总结随着我们继续进入数字时代,新算法和更强大的硬件将继续揭开以前难以解决的成绩背后的面纱。人工智能与化学发觉的整合仍处于起步阶段 —— 但听到 “数据驱动的发觉” 这个词已经很平常了。许多公司 —— 无论是制药巨头还是年轻的初创公司 —— 已经采用了上述许多技术,并为化学带来了更高的自动化、效率和可重复性。人工智能使我们能够以前所未有的规模开展科学,在过去几年中,这产生了许多举措并吸引了资金,这些资金将继续引领我们进一步进入自主科学发觉的时代。

原创文章,作者:机器之心,如若转载,请注明出处:https://www.iaiol.com/news/aiforscience-ren-gong-zhi-neng-gai-bian-hua-xue-ling-yu-dai/

(0)
上一篇 2022年 3月 6日 下午1:07
下一篇 2022年 3月 6日 下午1:17

相关推荐

  • 当春乃发「声」,呆板之心AI科技年会高朋揭晓

    时在中春,阳和方起。呆板之心「AI科技年会」将于3月23日举办。本次活动分为三场论坛:人工智能论坛、AI x Science 论坛和首席智行官大会。由于疫情原因,「人工智能论坛」与「AI x Science 论坛」转为线上直播;「首席智行官大会」仍在北京线下举办。「人工智能论坛」直播地址:http://live.bilibili.com/3519835「AI x Science 论坛」直播地址:http://live.bilibili.com/24531944「首席智行官大会」线下报名地址:http://hdxu.

    2022年 3月 10日
  • 量子力学与机械进修相结合,展望低温下的化学反应

    编辑/凯霞在低温下从氧化物中提炼金属不仅对于钢铁等金属的生产至关重要,而且对回收利用也必不可少。但当前的提炼过程是碳密集型的,会排放大量温室气体。钻研人员一直在探索开发「更绿色」的工艺法子。第一性道理理论的自下而上的计较过程设想,将是一个有吸引力的替代方案,但迄今为止尚未实现。来自哥伦比亚大学的钻研团队开发了一种新的计较技术,将量子力学和机械进修相结合,可准确展望金属氧化物对其「贱金属」的复原温度。该法子在计较上与常规计较一样有效,并且在测试中,比利用量子化学法子对温度效应的计较要求高的模拟更准确。该钻研以「Aug

    2021年 12月 13日
  • 支撑异构图、集成GraphGym,超好用的图神经网络库PyG更新2.0版本

    当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支撑、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。

    2021年 9月 14日
  • 典范教材《统计进修导论》第二版来了,新增深度进修等内容,免费下载

    典范的《统计进修导论》又出第二版了,相比于第一版,新版增加了深度进修、生存剖析、多重测试等内容,可免费下载。

    2021年 8月 8日
  • 他发明了通用数据压缩算法:Jacob Ziv获2021 IEEE名誉勋章

    今年的 IEEE 名誉勋章,颁给了一位 90 岁老人:Jacob Ziv。

    2021年 1月 19日
  • 优秀!2021年google博士生奖研金陆续揭晓,同济校友王鑫龙、南大校友李昀入选

    在近日公布的google2021博士生奖研金部分名单中,来自阿德莱德大学、新南威尔士大学、昆士兰科技大学和悉尼大学的四位博士生获得该殊荣。

    2021年 8月 31日
  • 千寻地位亮相2022世界人工智能大会:首秀更精细化的数字孪生才智

     9月1日,2022世界人工智能大会在上海正式开幕。全球领先的时空智能基础设施公司——千寻地位网络有限公司(以下简称“千寻地位”)首次展示了具备精确时空才智的数字孪生产品在都会数字化、新基建建设等领域的利用,包括都会道路智能巡检和保护、高速公路高精度舆图收罗、智能矿山三维可视化办理等。今年的世界人工智能大会以“智联世界,元生无界”为主题,数字孪生、时空智能、元宇宙等硬核科技热门赛道备受关注。更精细化的数字孪生才智数字孪生是物理世界与数

    2022年 9月 1日
  • 只有170字节,最小的64位Hello World步伐这样写成

    最简单的 C 语言 Hello World 步伐,底层到底发生了什么?如何编写出最小的 64 位 Hello World 步伐?

    2020年 12月 25日
  • AI可诠释性及其在蚂蚁保险平安规模的运用简介

    可诠释性有关算法作为蚂蚁集团提出的“可托AI”技术架构的重要组成部分,已大量运用于蚂蚁集团保险平安风控的风险鉴别、欺诈举报审理等场景,取得了一些阶段性的成果。本系列文章,我们将以风控规模详细运用为例,尤其关注规模大师履历和机械进修要领的交互结合,介绍蚂蚁集团特点可诠释、图可诠释、逻辑可诠释等算法方案的探索和落地。大师点评:沈超 西安交通大学教授、网络空间保险平安学院副院长AI可诠释性是可托AI的重要组成部分,已成为野生智能规模的研究热点。可诠释性有助于用户了解系统的决议逻辑并建立信任,从而

    2022年 4月 24日
  • 「Hello World」中的「bug」

    Hello World 可能是许多人编写的第一个次序。这么简单的次序按理说应该没有 bug 吧?一位叫「sunfishcode」的开发者给出了令人意外的结论。

    2022年 3月 23日

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注