量化

  • 百亿量化私募“道歉”,AI选股还能信吗?

    近两年来,量化投资行业爆发式增长,一批私募范围突破百亿大关,备受商场关注。随着大量资金涌入量化私募,商场竞争亦在不断加剧,尤其是头部私募之间的比拼,纷纷展开军备竞赛。为了保持长期竞争上风,不少量化私募开始加大人工智能、机器进修方面的加入。与此同时,商场上也有许多疑问。阿尔法狗诞生以后,在围棋、象棋、德州扑克等范畴,人工智能已经彻底打败了人类。那么,在投资范畴人工智能会打败人类吗?近期,知名量化私募幻方量化因事迹回撤达到了历史最大值,在官微发布公告,表示“深感愧疚”。幻方表示,事迹波动的一部分原因来源于长周期上的持股

    2022年 1月 10日
  • 服务量化投资,基于学问图谱的事宜表征框架钻研入选SIGIR

    瞰点科技和上海交大的钻研团队提出了一种服务于量化投资的基于学问图谱的事宜表征框架,称为 Knowledge Graph-based Event Embedding Framework(KGEEF)。通过在真实股票市场上进行的大规模实行表明,本文提出的格式显著有助于量化投资的政策提升。

    2021年 8月 22日
  • 逼近量化训练?块重修技术打造离线量化新极限

    模型量化技术可以有效加速推理,已经成为人工智能芯片的标配,并在工业落地中广泛应用。离线量化(Post-Training Quantization)不需要耦合训练流程,利用成本和时间成本低,往往作为生产量化模型的首选方式,但其可调整空间有限,因此面临更大的准确度挑战,尤其是在一些特殊场景和极端要求下,不得不进一步引入更为复杂的在线量化(Quantization Aware Training)流程挽救,而这极大增加了量化模型生产的复杂度。如何在享受离线量化便捷高效的同时,在有限的调整“夹缝”中提升其成果上限,成为进一步打破技术红线的关键。在ICLR2021上,商汤科技研究院Spring工具链团队、高性能计算团队和成都电子科技大学顾实老师团队合作提出了块重修技术BRECQ,重新审视量化模型的优化粒度,首次将离线量化在4bit上的成果提升到在线量化的水平,相比在线量化可以节省大于200倍的生产时间,BRECQ在多种搜集和任务上普遍取得了业界最佳成果,打造了离线量化的新极限。

    2021年 3月 26日
  • 解读阿里云PAI模型紧缩手艺落地实时挪动端智能应用

    随着挪动端AI应用摆设需求的日益增强,模型紧缩作为深度学习模型实现轻量化摆设的有用手段,在挪动端场景越来越受关注。尤其是剪枝、量化、权重稀疏化与网络结构搜索等算法政策,能够帮助减少深度模型端侧摆设时的资源消耗(Latency、Energy与Memory等),始终是学术界与工业界的发展焦点。阿里云机器学习PAI平台模型紧缩手艺,在端智能应用场景实现了端侧智能的快速赋能与应用落地。尤其在2020年阿里双十一期间,淘宝直播App的“一猜到底”语音交互游戏中,PAI模型紧缩手艺体现了关键作用。淘宝直播一猜到底背后的模型紧缩

    2021年 2月 18日