比特

  • 科研产业即将迎来AI赋能拐点

    「机器之心2021-2022年度AI趋势大咖说」聚焦「驱动未来的AI技术」与「重塑产业的AI科技」,推出线上分享,共邀请近40位AI领域知名学者、产业专家及企业高管通过主题分享及多人圆桌等形式,与行业精英、读者、观众共同回顾 2021年中的重要技术和学术热点,盘点AI产业的年度研究方向以及重大科技突破,展望2022年度AI技术发展方向、AI技术与产业科技融合趋势。

    2022年 7月 22日
  • FOCS 2021 | 针对Insdel间隔的局部可解码编码的下界

    近日,北京大学前沿计较研讨中心助理教授程宽博士与其合作者的论文“Exponential Lower Bounds for Locally Decodable and Correctable Codes for Insertions and Deletions”发表在理论计较机科学国际顶级会议 FOCS 2021上。这篇文章探讨了编码理论中的一个重要课题,Locally Decodable Code 在 insertion deletion distance 场景下的下界。

    2022年 7月 18日
  • 引入纯度和范例注释、捕捉编程错误,MIT推出低开销量子编程言语Twist

    研究者希望 Twist 为创立更多有助于编程人员更易面对量子估计挑战的言语铺平道路。

    2022年 2月 6日
  • 逼近量化训练?块重修技术打造离线量化新极限

    模型量化技术可以有效加速推理,已经成为人工智能芯片的标配,并在工业落地中广泛应用。离线量化(Post-Training Quantization)不需要耦合训练流程,利用成本和时间成本低,往往作为生产量化模型的首选方式,但其可调整空间有限,因此面临更大的准确度挑战,尤其是在一些特殊场景和极端要求下,不得不进一步引入更为复杂的在线量化(Quantization Aware Training)流程挽救,而这极大增加了量化模型生产的复杂度。如何在享受离线量化便捷高效的同时,在有限的调整“夹缝”中提升其成果上限,成为进一步打破技术红线的关键。在ICLR2021上,商汤科技研究院Spring工具链团队、高性能计算团队和成都电子科技大学顾实老师团队合作提出了块重修技术BRECQ,重新审视量化模型的优化粒度,首次将离线量化在4bit上的成果提升到在线量化的水平,相比在线量化可以节省大于200倍的生产时间,BRECQ在多种搜集和任务上普遍取得了业界最佳成果,打造了离线量化的新极限。

    2021年 3月 26日