ECCV 2022 | 无需卑鄙训练,Tip-Adapter大幅提升CLIP图象分类准确率

本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于卑鄙 few-shot 图象分类的规划。

图片

论文链接:https://arxiv.org/pdf/2207.09519.pdf

代码链接:https://github.com/gaopengcuhk/Tip-Adapter

一.研究背景

对比性图象语言预训练模型(CLIP)在近期展现出了强大的视觉领域转嫁能力,可以在一个全新的卑鄙数据集上进行 zero-shot 图象识别。为了进一步提升 CLIP 的转嫁功能,现有方法使用了 few-shot 的设置,例如 CoOp 和 CLIP-Adapter,即提供了少量卑鄙数据集的训练数据,使得 CLIP 能够更好的针对不同的视觉场景做出调整。但是,这种额外的训练步骤会带来不小的时间和空间资源开销,一定程度上影响了 CLIP 固有的快速常识转嫁能力。因此,我们提出了 Tip-Adapter,一种不需要额外卑鄙训练并且能很大程度提升 CLIP 准确率的 few-shot 图象分类方法。基于此,我们又提出了一种仅需要少量微调就能达到 state-of-the-art 功能的规划:Tip-Adapter-F,实现了效率和功能的最佳折中。如下表 1 所示,Tip-Adapter 不需要任何训练时间,即可以将 CLIP 在 ImageNet 数据集提升 + 1.7% 准确率(Accuracy),而 Tip-Adapter-F 仅需要之前规划十分之一的训练时间(Epochs,Time),就可以实现现有最佳的分类功能。

图片

表 1:不同规划在 ImageNet 数据集上 16-shot 的图象分类准确率和训练时间的比拟

二.研究方法

1.Tip-Adapter

Tip-Adapter 的整体网络结构如下图 1 所示,对于给定的 few-shot 训练数据集和标签,我们借助 CLIP 通过一个非训练的规划来建立一个缓存模型(Cache Model),它存储了来自卑鄙训练数据的分类常识;在尝试时,Tip-Adapter 通过将 Cache Model 的展望和原始 CLIP 的展望进行线性加和,来失掉更强的最终分类结果。

详细的来说,我们使用 CLIP 预训练好的视觉编码器(Visual Encoder)来提取 few-shot 训练集所有图片的特色,作为 Cache Model 的 Keys;并且将对应的图片标签转化为 one-hot 编码的形式,作为 Cache Model 的 Values。这种 Key-Value Cache Model 的建立方法由于使用的是已经预训练好的 Visual Encoder,所以不需要任何训练开销;并且考虑到 few-shot 训练集中,每一个类别只含有少量的图片(1~16 shots),Cache Model 也几乎不会占用额外的显存开销,参考表一中的 GPU Mem. 指标。

对于一张尝试图片,我们首先会利用 CLIP 的 Visual Encoder 来失掉它的特色,再将该特色视为 Query 去 Cache Model 中进行卑鄙 few-shot 数据的常识检索。由于 Keys 也是由 CLIP 的 Visual Encoder 提取得倒,因此和尝试图片特色 Query 同源,我们可以直接计算它们之间的余弦相似度得倒一个 Key-Query 的邻接矩阵,此矩阵可以看作是每一个对应 Value 的权重。因此,我们可以计算 Values 的加权和来失掉该尝试图象通过检索 Cache Model 失掉的分类展望。除此之外,我们还可以通过将尝试图片特色和 CLIP 的 Textual Encoder 文本特色进行匹配,来失掉 CLIP 的 zero-shot 展望。通过将两者进行线性加权求和,我们失掉了最终的分类展望,该展望既蕴含了 CLIP 预训练的图象语言对比性常识,也结合了卑鄙新数据集的 few-shot 常识,因此可以实现更强的图象分类准确率。

基于 Tip-Adapter 的网络结构,我们可以进一步将 Cache Model 中的 Keys 部分变为学习参数,即可以通过训练来进行更新,该规划为 Tip-Adapter-F。借助已经建立好的 Cache Model,Tip-Adapter-F 仅需要现有 CLIP-Adapter 十分之一的训练回合数和时间,就可以实现更高的功能,如表一所示。

图片

图 1:Tip-Adapter 和 Tip-Adapter-F 的网络流程图

2.Tip-Adapter 和现有规划的区别与联系

对比 CLIP-Adapter,如图 2 所示,Tip-Adapter 存储的 Keys 和 Values 其实可以分别对应于 CLIP-Adapter 中 adapter 结构的两个线性层,只不过前者是不需要训练来建立的,后者是随机初始化,然后需要训练来学习最佳的参数。

图片

图 2:Tip-Adapter 相比于 CLIP-Adapter

对比现有的其他建立 Cache Model 的规划,如图 3 所示,Tip-Adapter 的 Cache Model 可以看作是一种多模态的视觉语言 Cache。因为 CLIP 的 Textual Encoder 输出的特色可以看作是文本的 Key-Value,即相当于尝试图片特色作为 Query,分别在视觉和文本的 Cache 中检索常识,相对于现有的仅含视觉 Cache 的规划,Tip-Adapter 能够利用多模态常识失掉更强的识别功能。

图片

图 3:Tip-Adapter 相比于其他建立 Cache Model 的规划

三.实验结果

1.  在 ImageNet 的分类准确率

图 4 和表 2 比拟了 Tip-Adapter、Tip-Adapter-F 和现有各个规划在 1、2、4、8、16 shots 的 few-shot 图象分类准确率;表 3 比拟了 16-shot ImageNet 数据集上使用不同 CLIP 的 Visual Encoder 的准确率比拟。可见,我们的两种规划都在资源开销很小的情况下,达到了非常卓越的功能。

图片

图片

图 4 和表 2:ImageNet 数据集上不同方法的 1~16-shot 图象分类准确率比拟

图片

表 5:16-shot ImageNet 上不同 CLIP 的 Visual Encoder 的图象分类准确率比拟

2.  在另外 10 个图象分类数据集

如图 5 所示,我们提供了另外 10 个图象分类数据集的准确率比拟结果,分别是 StandfordCars,UCF101,Caltech101,Flowers102,SUN397,DTD,EuroSAT,FGVCAircraft,OxfordPets 和 Food101。如图所示,我们的 Tip-Adapter-F 均取得了最高的识别准确率。

图片

图片

图 5:另外 10 个数据集上不同方法的 1~16-shot 图象分类准确率比拟

3.  领域泛化能力的测评

我们也尝试了 Tip-Adapter 和 Tip-Adapter-F 在领域泛化(Domain Generalization)方面的表现。如表 6 所示,我们的两种规划都表现出了很强的鲁棒性以及特色转嫁能力。

图片

四.结论

本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于卑鄙 few-shot 图象分类的规划。Tip-Adapter 通过建立一个 Key-Value Cache Model,来作为尝试图片 Query 的常识检索库,并通过融合 Cache Model 的展望和 CLIP 的 zero-shot 展望,来失掉更强的识别功能。我们期望 Tip-Adapter 可以启发更多预训练模型高效转嫁的后续工作。

原创文章,作者:机器之心,如若转载,请注明出处:https://www.iaiol.com/news/27118

(0)
上一篇 2022年9月23日 下午3:46
下一篇 2022年9月27日 下午2:15

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注